论文标题

重新审视(1+1)维度的手性异常:互补动力学观点和普遍性

Chiral anomaly in (1+1) dimensions revisited: complementary kinetic perspective and universality

论文作者

Hsiao, Wei-Han, Wang, Chiao-Hsuan

论文摘要

我们在(1+1)尺寸时空中重新投资了手性异常的经典示例。通过使用半经典玻尔兹曼方程来审查电荷保护的推导,我们表明手性异常可能会在(1+1)维度中出现,而无需浆果曲率校正到动力学理论。关键步骤仅取决于$ \ mathbf p \ to \ pm \ pm \ is \ infty $,而不是分散的详细功能形式。我们解决了这一观察结果激励的两个主题。首先,我们使用动力学理论重新制定了(1+1) - 维度的手性异常,并具有当前的代数方法和Dirac Lagrangian的梯度扩展,从而为现有方法增添了互补的观点。其次,我们证明了在各种准粒子分散体中手性异常的普遍性。对于时间衍生物中的两种波段模型,使用藤川的方法,我们表明,具有严格的单调分散体是足够的,以表现出手性异常。

We reinvestigate the classic example of the chiral anomaly in (1+1) dimensional spacetime. By reviewing the derivation of charge conservation using the semiclassical Boltzmann equation, we show that chiral anomalies could emerge in (1+1) dimensions without Berry curvature corrections to the kinetic theory. The pivotal step depends only on the asymptotic behavior of the distribution function of the quasiparticle--and thus its dispersion relation--in the limit of $\mathbf p\to\pm\infty$ rather than the detailed functional form of the dispersion. We address two subjects motivated by this observation. First, we reformulate (1+1)-dimensional chiral anomaly using kinetic theory with the current algebra approach and the gradient expansion of the Dirac Lagrangian, adding a complementary perspective to existing approaches. Second, we demonstrate the universality of the chiral anomaly across various quasiparticle dispersions. For two-band models linear in the temporal derivative, with Fujikawa's method we show it is sufficient to have a chirality-odd strictly monotonic dispersion in order to exhibit the chiral anomaly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源