论文标题

在$α$ -rucl $ _3 $的抗铁磁相中的元磁过渡的磁光研究

Magneto-optical study of metamagnetic transitions in the antiferromagnetic phase of $α$-RuCl$_3$

论文作者

Wagner, Julian, Sahasrabudhe, Anuja, Versteeg, Rolf, Wysocki, Lena, Wang, Zhe, Tsurkan, Vladimir, Loidl, Alois, Khomskii, Daniel. I., Hedayat, Hamoon, van Loosdrecht, Paul H. M.

论文摘要

$α$ -rucl $ _3 $是一种有前途的候选材料,可以意识到到目前为止难以捉摸的量子旋转液体基态。但是,在低温下,不同交换相互作用的共存将有效的伪依固定在抗磁性曲折(ZZ)序状态下。旋转结构的低场演化仍然是一个争论的问题,蜂窝平面内的磁各向异性是一个开放而挑战的问题。在这里,我们通过二阶磁光效应,磁性线性二色性和磁性线性双折射来研究ZZ顺序参数的演变。我们的结果阐明了在$α$ -rucl $ _3 $的ZZ阶段中元磁过渡的存在和性质。我们的实验观察结果表明,在特定的晶体学方向上,对小平面内施加的磁场($ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \约1.6吨)的自旋触发过渡的存在。另外,使用磁光学方法,我们在抑制ZZ阶之前检测到了最近报道的场诱导的中间相的出现。我们的结果揭示了各种依赖角度内部元磁的元素的细节,以量化$α$ -rucl $ _3 $中存在的债券 - 肛门相互作用

$α$-RuCl$_3$ is a promising candidate material to realize the so far elusive quantum spin liquid ground state. However, at low temperatures, the coexistence of different exchange interactions couple the effective pseudospins into an antiferromagnetically zigzag (ZZ) ordered state. The low-field evolution of spin structure is still a matter of debate and the magnetic anisotropy within the honeycomb planes is an open and challenging question. Here, we investigate the evolution of the ZZ order parameter by second-order magneto-optical effects, the magnetic linear dichroism and magnetic linear birefringence. Our results clarify the presence and nature of metamagnetic transitions in the ZZ phase of $α$-RuCl$_3$. Our experimental observations show the presence of initial magnetic domain repopulation followed by a spin-flop transition for small in-plane applied magnetic fields ($\approx$ 1.6 T) along specific crystallographic directions. In addition, using a magneto-optical approach, we detected the recently reported emergence of a field-induced intermediate phase before suppressing the ZZ order. Our results disclose the details of various angle-dependent in-plane metamagnetic transitions quantifying the bond-anisotropic interactions present in $α$-RuCl$_3$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源