论文标题

$ b_ {p,1}^{1} \ cap c^{0,1} $中的Camassa-Holm方程不良

Ill-posedness for the Camassa-Holm equation in $B_{p,1}^{1}\cap C^{0,1}$

论文作者

Li, Jinlu, Yu, Yanghai, Guo, Yingying, Zhu, Weipeng

论文摘要

在本文中,我们研究了真实线上Camassa-Holm方程的库奇问题。通过介绍新的初始数据构造,我们表明较小空间中的解决方案映射$ b_ {p,1}^{1} \ cap c^{0,1} $,$ p \ in(2,\ infty] $在原点不连续。 Camassa-Holm方程在$ W^{1,P} \ CAP C^{0,1} $中具有独特的本地解决方案,但是,对于某些初始数据,该解决方案是稳定的,并且可以在$ b_ {p,1}^{1}^{1}^{1}^{1}^{1}^{1}^{0,1} $中具有通胀。

In this paper, we study the Cauchy problem for the Camassa-Holm equation on the real line. By presenting a new construction of initial data, we show that the solution map in the smaller space $B_{p,1}^{1}\cap C^{0,1}$ with $p\in(2,\infty]$ is discontinuous at origin. More precisely, $u_0\in B_{p,1}^{1}\cap C^{0,1}$ can guarantee that the Camassa-Holm equation has a unique local solution in $W^{1,p}\cap C^{0,1}$, however, this solution is instable and can have an inflation in $B_{p,1}^{1}\cap C^{0,1}$ for certain initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源