论文标题

新的高级阳阳 - 米尔斯 - 里曼尼亚人流动$ 4 $ - manifold

A new higher order Yang--Mills--Higgs flow in Riemannian $4$-manifold

论文作者

Saratchandran, Hemanth, Zhang, Jiaogen, Zhang, Pan

论文摘要

令$(m,g)$为封闭的Riemannian $ 4 $ - manifold,让$ e $是$ m $的矢量捆绑包,结构组$ g $,其中$ g $是一个紧凑的谎言组。在本文中,我们考虑了一个新的高阶杨 - 米尔斯 - higgs功能,其中希格斯字段是$ω^0(\ textmd {ad} e)$的部分。我们表明,在适当的条件下,梯度流的解决方案不会达到任何有限的时间奇点。如果$ e $是线条捆绑包,我们可以使用不同的爆破过程,并在\ cite {z1}中获得长期结果的改进。该证明与绿色函数的属性相当相关,绿色功能与\ cite {ke,sa,z1}中的先前技术有很大不同。

Let $(M,g)$ be a closed Riemannian $4$-manifold and let $E$ be a vector bundle over $M$ with structure group $G$, where $G$ is a compact Lie group. In this paper, we consider a new higher order Yang--Mills--Higgs functional, in which the Higgs field is a section of $Ω^0(\textmd{ad}E)$. We show that, under suitable conditions, solutions to the gradient flow do not hit any finite time singularities. In the case that $E$ is a line bundle, we are able to use a different blow up procedure and obtain an improvement of the long time result in \cite{Z1}. The proof is rather relevant to the properties of the Green function, which is very different from the previous techniques in \cite{Ke,Sa,Z1}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源