论文标题
在一些可解决的莱布尼兹代数及其完整性上
On some solvable Leibniz algebras and their completeness
论文作者
论文摘要
该论文专门研究可解决的莱布尼兹代数,具有编码的nilraverical等于其发电机的数量。我们在非分类的尼尔自由基案例中描述了这一类。然后,解决了分裂尼尔自由基的情况。我们表明,这类莱布尼兹代数较早获得的结果是本文结果的特殊情况。结果表明,这种可解决的扩展是唯一的。最后,我们证明了所考虑的可解决的莱布尼兹代数是完整的。
The paper is devoted studying solvable Leibniz algebras with a nilradical possessing the codimension equals the number of its generators. We describe this class in non-split nilradical case. Then the case of split nilradical is worked out. We show that the results obtained earlier on this class of Leibniz algebras come as particular cases of the results of this paper. It is shown that such a solvable extension is unique. Finally, we prove that the solvable Leibniz algebras considered are complete.