论文标题

一种深度学习方法,将人类水平的理解整合到聊天机器人中

A Deep Learning Approach to Integrate Human-Level Understanding in a Chatbot

论文作者

Abedin, Afia Fairoose, Mamun, Amirul Islam Al, Nowrin, Rownak Jahan, Chakrabarty, Amitabha, Mostakim, Moin, Naskar, Sudip Kumar

论文摘要

最近,许多人参与了自己的业务。与人类不同,聊天机器人可以一次为多个客户提供服务,可在24/7全天候提供,并且不到一秒钟的时间就可以回复。尽管聊天机器人在以任务为导向的活动中表现良好,但在大多数情况下,他们无法理解个性化的意见,声明甚至查询,这些意见,询问后来影响组织不良的服务管理。在机器人中缺乏理解能力,无法继续与他们进行对话。通常,聊天机器人在无法准确解释用户文本时会提供荒谬的响应。通过使用聊天机器人从对话中提取客户评论,组织可以减少用户与聊天机器人之间的主要理解差距并提高其产品和服务的质量。因此,在我们的研究中,我们整合了所有聊天机器人分析和准确和准确地分析和理解输入文本所必需的关键元素。我们使用深度学习进行了情感分析,情感检测,意图分类和指定性识别,以人文理解和智慧开发聊天机器人。我们的方法的效率可以通过详细分析相应地证明。

In recent times, a large number of people have been involved in establishing their own businesses. Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second. Though chatbots perform well in task-oriented activities, in most cases they fail to understand personalized opinions, statements or even queries which later impact the organization for poor service management. Lack of understanding capabilities in bots disinterest humans to continue conversations with them. Usually, chatbots give absurd responses when they are unable to interpret a user's text accurately. Extracting the client reviews from conversations by using chatbots, organizations can reduce the major gap of understanding between the users and the chatbot and improve their quality of products and services.Thus, in our research we incorporated all the key elements that are necessary for a chatbot to analyse and understand an input text precisely and accurately. We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence. The efficiency of our approach can be demonstrated accordingly by the detailed analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源