论文标题

在结构化模型中快速推断的低排名约束

Low-Rank Constraints for Fast Inference in Structured Models

论文作者

Chiu, Justin T., Deng, Yuntian, Rush, Alexander M.

论文摘要

结构化分布,即组合空间上的分布,通常用于从观察到的数据中学习潜在的概率表示。但是,相对于潜在表示的尺寸,高计算和记忆复杂性缩放了这些模型。诸如隐藏的Markov模型(HMM)和概率无上下文语法(PCFG)之类的常见模型分别需要时间和空间二次和立方的隐藏状态数量。这项工作展示了一种简单的方法来降低大量结构化模型的计算和记忆复杂性。我们表明,通过将中心推理步骤视为矩阵向量产品并使用低级别的约束,我们可以通过等级进行模型表达性和速度来交易。使用神经参数化的结构化模型进行的实验,用于语言建模,多形音乐建模,无监督的语法诱导和视频建模表明,我们的方法与大型状态空间处的标准模型的准确性相匹配,同时提供实用的加速。

Structured distributions, i.e. distributions over combinatorial spaces, are commonly used to learn latent probabilistic representations from observed data. However, scaling these models is bottlenecked by the high computational and memory complexity with respect to the size of the latent representations. Common models such as Hidden Markov Models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) require time and space quadratic and cubic in the number of hidden states respectively. This work demonstrates a simple approach to reduce the computational and memory complexity of a large class of structured models. We show that by viewing the central inference step as a matrix-vector product and using a low-rank constraint, we can trade off model expressivity and speed via the rank. Experiments with neural parameterized structured models for language modeling, polyphonic music modeling, unsupervised grammar induction, and video modeling show that our approach matches the accuracy of standard models at large state spaces while providing practical speedups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源