论文标题

Hessian样品优化QN

QN Optimization with Hessian Sample

论文作者

Azzam, Joy, Henderson, Daniel, Ong, Benjamin, Struthers, Allan

论文摘要

本文探讨了如何有效地合并使用SIMD - 平行前向模式算法分化(AD)生成的曲率信息,以无约束的准Newton(QN)最小化光滑的目标函数,$ f $。具体而言,可以使用前向模式AD来生成块Hessian样品$ y = \ nabla^2 f(x)\,s $,只要评估梯度。然后将QN算法与这些Hessian样本更新大概更新近似逆Hessians,$ h_k \ of $ h_k \ Nabla^2 f(x_k)$。基于标准线路搜索的BFGS算法仔细过滤并校正基于SECENT的近似曲率信息以保持正定的确定近似值,但我们的算法直接合并了Hessian样品,以更新无限期的逆Hessian近似近似值而无需过滤。采样方向补充了标准的QN二维信任区域子问题,以产生一个适度的维度子问题,该子问题可以利用负曲率。通过广义特征值算法和使用标准信任区域步骤的接受度和半径调整,可以准确地求解所得的二次约束二次程序。本文旨在避免连续瓶颈,利用准确的正曲率和负曲率信息,并对$ s $的选择策略进行初步评估。

This article explores how to effectively incorporate curvature information generated using SIMD-parallel forward-mode Algorithmic Differentiation (AD) into unconstrained Quasi-Newton (QN) minimization of a smooth objective function, $f$. Specifically, forward-mode AD can be used to generate block Hessian samples $Y=\nabla^2 f(x)\,S$ whenever the gradient is evaluated. Block QN algorithms then update approximate inverse Hessians, $H_k \approx \nabla^2 f(x_k)$, with these Hessian samples. Whereas standard line-search based BFGS algorithms carefully filter and correct secant-based approximate curvature information to maintain positive definite approximations, our algorithms directly incorporate Hessian samples to update indefinite inverse Hessian approximations without filtering. The sampled directions supplement the standard QN two-dimensional trust-region sub-problem to generate a moderate dimensional subproblem which can exploit negative curvature. The resulting quadratically-constrained quadratic program is solved accurately with a generalized eigenvalue algorithm and the step advanced using standard trust region step acceptance and radius adjustments. The article aims to avoid serial bottlenecks, exploit accurate positive and negative curvature information, and conduct a preliminary evaluation of selection strategies for $S$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源