论文标题

Loschmidt Echo和Poincaré纠缠的复发

Loschmidt echo and Poincaré recurrences of entanglement

论文作者

Ermann, Leonardo, Frahm, Klaus M., Shepelyansky, Dima L

论文摘要

我们以数值方式研究两个相互作用或非相互作用的粒子的纠缠特性,这些粒子在量子chirikov标准图中的量子混乱状态中进化。这样的对可以看作是在量子混乱制度中的非相互作用的爱因斯坦 - 波多尔斯基 - 罗森对之间的相互作用。该分析是用诸如纠缠的Loschmidt Echo和在吸收存在下纠缠的庞加莱复发的工具进行的。获得的结果表明,纠缠熵的异常特征和施密特分解的光谱及其依赖于不同量子混乱状态下的相互作用的特征。

We study numerically the properties of entanglement of two interacting, or noninteracting, particles evolving in a regime of quantum chaos in the quantum Chirikov standard map. Such pairs can be viewed as interacting, on noninteracting, Einstein-Podolsky-Rosen pairs in a regime of quantum chaos. The analysis is done with such tools as the Loschmidt echo of entanglement and the Poincaré recurrences of entanglement in presence of absorption. The obtained results show unusual features of the entropy of entanglement and the spectrum of Schmidt decomposition with their dependence on interactions at different quantum chaos regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源