论文标题

负面证据在可解释的组织学图像分类中很重要

Negative Evidence Matters in Interpretable Histology Image Classification

论文作者

Belharbi, Soufiane, Pedersoli, Marco, Ayed, Ismail Ben, McCaffrey, Luke, Granger, Eric

论文摘要

仅使用全局图像级标签,弱监督的学习方法(例如类激活映射)允许训练CNN共同对图像进行分类,并找到与预测类相关的感兴趣区域。但是,如果没有像素级别的任何指导,这种方法可能会产生不准确的区域。众所周知,与自然图像相比,该问题对组织学图像更具挑战性,因为对象的显着性较小,结构具有更多的变化,前景和背景区域具有更强的相似性。因此,用于视觉解释CNN的计算机视觉方法可能不会直接应用。在本文中,提出了一种基于复合损失的简单而有效的方法,以从完全负面样本(即没有正区域的样本)中学习信息,从而减少误报/负面因素。我们的新损失函数包含两个互补术语:第一个利用从CNN分类器收集的积极证据,而第二个则利用了训练数据的完全负面样本。特别是,预训练的CNN配备了一个解码器,该解码器允许精炼感兴趣的区域。利用CNN在像素水平上收集正面和负面证据以训练解码器。我们称为NEGEV的方法受益于数据中自然出现的完全负面样本,而没有图像类标签以外的任何其他监督信号。广泛的实验表明,我们提出的方法可以大大优于GLA(结肠癌的公共基准)和Camelyon16(使用三种不同骨架的基于斑块的乳腺癌基准)的大量相关的最新方法。我们的结果突出了使用正面证据和负面证据,第一个从分类器获得的好处以及数据集中的其他自然可用的好处。

Using only global image-class labels, weakly-supervised learning methods, such as class activation mapping, allow training CNNs to jointly classify an image, and locate regions of interest associated with the predicted class. However, without any guidance at the pixel level, such methods may yield inaccurate regions. This problem is known to be more challenging with histology images than with natural ones, since objects are less salient, structures have more variations, and foreground and background regions have stronger similarities. Therefore, computer vision methods for visual interpretation of CNNs may not directly apply. In this paper, a simple yet efficient method based on a composite loss is proposed to learn information from the fully negative samples (i.e., samples without positive regions), and thereby reduce false positives/negatives. Our new loss function contains two complementary terms: the first exploits positive evidence collected from the CNN classifier, while the second leverages the fully negative samples from training data. In particular, a pre-trained CNN is equipped with a decoder that allows refining the regions of interest. The CNN is exploited to collect both positive and negative evidence at the pixel level to train the decoder. Our method called NEGEV benefits from the fully negative samples that naturally occur in the data, without any additional supervision signals beyond image-class labels. Extensive experiments show that our proposed method can substantial outperform related state-of-art methods on GlaS (public benchmark for colon cancer), and Camelyon16 (patch-based benchmark for breast cancer using three different backbones). Our results highlight the benefits of using both positive and negative evidence, the first obtained from a classifier, and the other naturally available in datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源