论文标题
实验室等离子体中激光驱动的离子尺度磁层。 ii。粒子中的模拟
Laser-Driven, Ion-Scale Magnetospheres in Laboratory Plasmas. II. Particle-in-cell Simulations
论文作者
论文摘要
已经在彗星上观察到离子尺度的磁层,弱磁化的小行星和月球上的局部区域,并提供了一个独特的环境来研究动力学等离子体物理学,特别是在无碰撞状态下。在这项工作中,我们介绍了粒子中模拟的结果,这些模拟在加利福尼亚大学洛杉矶分校的大型等离子体设备上复制了最新实验。使用高重复速率激光器,创建了离子尺度的磁层,以将等离子体流动到嵌入均匀背景磁场中的偶极磁场中。模拟被用来进化实验的理想化的2D配置,研究高度分辨,体积数据集,并确定等离子体电流分布的磁层结构,磁层位置和动力学尺度结构。我们显示了磁层区域中磁腔和磁压缩的形成,以及在磁性障碍物时代的两个主要电流结构:由驱动器等离子体流动支持的Dimamagnetic电流,以及与磁磁相关的电流,由背景和驱动器等离子体支撑,并具有一定的时间依赖性。从多个参数扫描中,我们显示了磁压缩的反射,该磁压缩由驱动器等离子体的长度和较低偶极磁矩的主要电流结构的较高分离。
Ion-scale magnetospheres have been observed around comets, weakly-magnetized asteroids, and localized regions on the Moon, and provide a unique environment to study kinetic-scale plasma physics, in particular in the collisionless regime. In this work, we present the results of particle-in-cell simulations that replicate recent experiments on the Large Plasma Device at the University of California, Los Angeles. Using high-repetition rate lasers, ion-scale magnetospheres were created to drive a plasma flow into a dipolar magnetic field embedded in a uniform background magnetic field. The simulations are employed to evolve idealized 2D configurations of the experiments, study highly-resolved, volumetric datasets and determine the magnetospheric structure, magnetopause location and kinetic-scale structures of the plasma current distribution. We show the formation of a magnetic cavity and a magnetic compression in the magnetospheric region, and two main current structures in the dayside of the magnetic obstacle: the diamagnetic current, supported by the driver plasma flow, and the current associated to the magnetopause, supported by both the background and driver plasmas with some time-dependence. From multiple parameter scans, we show a reflection of the magnetic compression, bounded by the length of the driver plasma, and a higher separation of the main current structures for lower dipolar magnetic moments.