论文标题
在太阳附近的恒星光环中的子结构。 I.运动空间积分中数据驱动的聚类
Substructure in the stellar halo near the Sun. I. Data-driven clustering in Integrals of Motion space
论文作者
论文摘要
目的:开发一种基于数据驱动的基于统计的方法,用于在附近的光环恒星的运动空间积分中找到此类团块,并稳健地评估其意义。方法:我们使用来自GAIA EDR3的数据扩展,径向速度从地面光谱调查中构建了来自太阳2.5 kpc的光晕恒星样本。我们应用了一种层次聚类方法,该方法在3D空间中使用单个链接算法,该算法由常用的运动能量$ e $定义的3D空间,以及两个角度动量的组件,$ l_z $和$ l_z $和$ l_ \ perp $。为了评估所发现的簇的统计显着性,我们比较了以簇为中心的椭圆形区域内的密度与具有相似全局动力学特性的随机集合的椭圆形区域中的密度。我们在分层树中最大统计显着性的位置挑选信号。我们使用Mahalanobis距离估计恒星距离聚类中心的接近度。我们还将HDBSCAN聚类算法应用于速度空间。结果:我们的过程确定了67个高度显着的群集($>3σ$),其中包含我们光环集中的12 \%源,总共232个亚组或速度空间中的单个流。总共,我们的数据集中的13.8%的恒星可以根据其Mahalanobis距离与一个重要的簇相关。对我们的数据集的检查揭示了重要的簇之间的复杂关系,这表明它们可以暂时将其分为至少6个主要结构,其中许多结构可以与先前确定的Halo子结构和许多独立的子结构相关联。 Ruiz-Lara等人的随附论文中进一步探讨了这个初步结论,在那里我们还根据其出色的人群来表征这些子结构。结论:我们发现...(删节版)
Aims: Develop a data-driven and statistically based method for finding such clumps in Integrals of Motion space for nearby halo stars and evaluating their significance robustly. Methods: We use data from Gaia EDR3 extended with radial velocities from ground-based spectroscopic surveys to construct a sample of halo stars within 2.5 kpc from the Sun. We apply a hierarchical clustering method that uses the single linkage algorithm in a 3D space defined by the commonly used integrals of motion energy $E$, together with two components of the angular momentum, $L_z$ and $L_\perp$. To evaluate the statistical significance of the clusters found, we compare the density within an ellipsoidal region centered on the cluster to that of random sets with similar global dynamical properties. We pick out the signal at the location of their maximum statistical significance in the hierarchical tree. We estimate the proximity of a star to the cluster center using the Mahalanobis distance. We also apply the HDBSCAN clustering algorithm in velocity space. Results: Our procedure identifies 67 highly significant clusters ($ > 3σ$), containing 12\% of the sources in our halo set, and in total 232 subgroups or individual streams in velocity space. In total, 13.8\% of the stars in our data set can be confidently associated to a significant cluster based on their Mahalanobis distance. Inspection of our data set reveals a complex web of relationships between the significant clusters, suggesting that they can be tentatively grouped into at least 6 main structures, many of which can be associated to previously identified halo substructures, and a number of independent substructures. This preliminary conclusion is further explored in an accompanying paper by Ruiz-Lara et al., where we also characterize the substructures in terms of their stellar populations. Conclusions: We find... (abridged version)