论文标题

使用遗传算法进行地球物理流的替代建模的高参数搜索

Hyperparameter Search using Genetic Algorithm for Surrogate Modeling of Geophysical Flows

论文作者

Pawar, Suraj, San, Omer, Yen, Gary G.

论文摘要

地球物理流的计算模型在计算上非常昂贵,在数据同化,不确定性量化等多Query任务中使用,因此替代模型试图减轻与这些完整订单模型相关的计算负担。研究人员已经开始应用机器学习算法,尤其是神经网络,以构建数据驱动的地球物理流量替代模型。神经网络的性能高度依赖于其建筑设计和其他超参数的选择。这些神经网络通常是通过反复试验来手动设计的,以最大程度地提高其性能。这通常需要对神经网络的领域知识以及感兴趣的问题。可以通过使用进化算法自动设计架构并选择神经网络的最佳超参数来解决此限制。在本文中,我们将遗传算法应用于有效设计长期记忆(LSTM)神经网络,以构建海面温度场的非侵入性降低顺序模型。

The computational models for geophysical flows are computationally very expensive to employ in multi-query tasks such as data assimilation, uncertainty quantification, and hence surrogate models sought to alleviate the computational burden associated with these full order models. Researchers have started applying machine learning algorithms, particularly neural networks, to build data-driven surrogate models for geophysical flows. The performance of the neural network highly relies upon its architecture design and selection of other hyperparameters. These neural networks are usually manually designed through trial and error to maximize their performance. This often requires domain knowledge of the neural network as well as the problems of interest. This limitation can be addressed by using an evolutionary algorithm to automatically design architecture and select optimal hyperparameters of the neural network. In this paper, we apply the genetic algorithm to effectively design the long short-term memory (LSTM) neural network to build the non-intrusive reduced order model of the sea-surface temperature field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源