论文标题

多行为增强的建议,​​并通过跨界协作关系建模

Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling

论文作者

Xia, Lianghao, Huang, Chao, Xu, Yong, Dai, Peng, Lu, Mengyin, Bo, Liefeng

论文摘要

许多先前的研究旨在通过深度神经网络技术来增强协作过滤,以实现更好的建议性能。但是,大多数现有的基于深度学习的推荐系统都是为了建模奇异类型的用户项目交互行为而设计的,这几乎无法提炼用户和项目之间的异质关系。在实际的建议方案中,存在众多用户行为,例如浏览和购买。由于用户在不同项目上的多行为模式被忽略了,因此现有的建议方法不足以从用户多行为数据中捕获异质的协作信号。受图形神经网络的强度进行结构化数据建模的启发,这项工作提出了图形神经多行为增强建议(GNMR)框架,该框架明确地模拟了基于图的消息传递体系结构下不同类型的用户 - 项目之间的依赖关系。 GNMR设计了一个关系汇总网络来建模相互作用的异质性,并递归地在用户 - 项目交互图上递归进行嵌入传播。对现实世界建议数据集的实验表明,我们的GNMR始终优于最先进的方法。源代码可在https://github.com/akaxlh/gnmr上找到。

Many previous studies aim to augment collaborative filtering with deep neural network techniques, so as to achieve better recommendation performance. However, most existing deep learning-based recommender systems are designed for modeling singular type of user-item interaction behavior, which can hardly distill the heterogeneous relations between user and item. In practical recommendation scenarios, there exist multityped user behaviors, such as browse and purchase. Due to the overlook of user's multi-behavioral patterns over different items, existing recommendation methods are insufficient to capture heterogeneous collaborative signals from user multi-behavior data. Inspired by the strength of graph neural networks for structured data modeling, this work proposes a Graph Neural Multi-Behavior Enhanced Recommendation (GNMR) framework which explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture. GNMR devises a relation aggregation network to model interaction heterogeneity, and recursively performs embedding propagation between neighboring nodes over the user-item interaction graph. Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods. The source code is available at https://github.com/akaxlh/GNMR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源