论文标题

最佳排名近似比的概率界限

Probabilistic bounds on best rank-one approximation ratio

论文作者

Kozhasov, Khazhgali, Tonelli-Cueto, Josué

论文摘要

我们提供新的上限和下限,以(部分)对称张量的光谱和Frobenius规范的最小比率。在一般张量的特定情况下,我们的结果恢复了已知的上限。对于对称张量,我们的上限揭开范围,即规范的比率与微不足道的下限$ 1/\ sqrt {n^{d-1}} $相同,当时张紧$ d $的顺序是固定的,并且底层载体空间$ n $倾向于Infinity。但是,当$ n $固定并且$ d $倾向于无穷大时,我们的下限优于$ 1/\ sqrt {n^{d-1}} $。

We provide new upper and lower bounds on the minimum possible ratio of the spectral and Frobenius norms of a (partially) symmetric tensor. In the particular case of general tensors our result recovers a known upper bound. For symmetric tensors our upper bound unveils that the ratio of norms has the same order of magnitude as the trivial lower bound $1/\sqrt{n^{d-1}}$, when the order of a tensor $d$ is fixed and the dimension of the underlying vector space $n$ tends to infinity. However, when $n$ is fixed and $d$ tends to infinity, our lower bound is better than $1/\sqrt{n^{d-1}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源