论文标题

在光谱理论的某些方面,用于最大代数中无限界的非阴性矩阵

On some aspects of spectral theory for infinite bounded non-negative matrices in max algebra

论文作者

Müller, Vladimir, Peperko, Aljoša

论文摘要

获得了Max代数中无限界非负矩阵的几种光谱半径公式。我们还证明了此类矩阵的一些Perron-Frobenius型结果。特别是,我们获得了块三角形形式的结果,这些结果与$ n \ times n $矩阵的Frobenius正常形式的结果相似。还建立了一些连续性结果。

Several spectral radii formulas for infinite bounded nonnegative matrices in max algebra are obtained. We also prove some Perron-Frobenius type results for such matrices. In particular, we obtain results on block triangular forms, which are similar to results on Frobenius normal form of $n \times n$ matrices. Some continuity results are also established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源