论文标题
欧拉系统的爱森斯坦变性
Eisenstein degeneration of Euler systems
论文作者
论文摘要
我们讨论了Coleman家族的理论,插入关键斜坡艾森斯坦系列。我们将其应用于在Euler系统水平上研究退化现象。特别是,这使我们能够证明卡托元素,贝林森(Beilinson) - 弗拉赫(Flach)类别和对角线周期以及赫格纳周期和椭圆形单元之间的关系。我们希望该方法可以扩展到构建Euler系统的新实例。
We discuss the theory of Coleman families interpolating critical-slope Eisenstein series. We apply it to study degeneration phenomena at the level of Euler systems. In particular, this allows us to prove relations between Kato elements, Beilinson--Flach classes and diagonal cycles, and also between Heegner cycles and elliptic units. We expect that this method could be extended to construct new instances of Euler systems.