论文标题
EM驱动的无监督学习,以进行有效的运动细分
EM-driven unsupervised learning for efficient motion segmentation
论文作者
论文摘要
在本文中,我们提出了一种基于CNN的完全无监督的方法,用于从光流中进行运动分割。我们假设输入光流可以表示为一组参数运动模型,通常是仿射或二次运动模型。我们工作的核心思想是利用期望最大化(EM)框架,以良好的方式设计损失函数和运动分割神经网络的训练程序,而不需要接地或手动注释。但是,与经典的迭代EM相反,一旦训练了网络,我们就可以在单个推理步骤中为任何看不见的光流场提供分割,而无需估计任何运动模型。我们研究了不同的损失功能,包括强大的损失功能,并在光流场上提出了一种新型的有效数据增强技术,适用于任何以光流为输入的网络。此外,我们的方法能够通过设计来细分多个动作。我们的运动细分网络在四个基准测试中进行了测试,即Davis2016,Segtrackv2,FBMS59和MOCA,并且表现良好,同时在测试时间很快。
In this paper, we present a CNN-based fully unsupervised method for motion segmentation from optical flow. We assume that the input optical flow can be represented as a piecewise set of parametric motion models, typically, affine or quadratic motion models. The core idea of our work is to leverage the Expectation-Maximization (EM) framework in order to design in a well-founded manner a loss function and a training procedure of our motion segmentation neural network that does not require either ground-truth or manual annotation. However, in contrast to the classical iterative EM, once the network is trained, we can provide a segmentation for any unseen optical flow field in a single inference step and without estimating any motion models. We investigate different loss functions including robust ones and propose a novel efficient data augmentation technique on the optical flow field, applicable to any network taking optical flow as input. In addition, our method is able by design to segment multiple motions. Our motion segmentation network was tested on four benchmarks, DAVIS2016, SegTrackV2, FBMS59, and MoCA, and performed very well, while being fast at test time.