论文标题

添加剂制造中的耦合微流体粉末动力学的多功能SPH建模框架:粘合剂喷射,材料喷射,定向能量沉积和粉末床融合

A Versatile SPH Modeling Framework for Coupled Microfluid-Powder Dynamics in Additive Manufacturing: Binder Jetting, Material Jetting, Directed Energy Deposition and Powder Bed Fusion

论文作者

Fuchs, Sebastian L., Praegla, Patrick M., Cyron, Christian J., Wall, Wolfgang A., Meier, Christoph

论文摘要

许多添加剂制造(AM)技术依赖于粉末原料,粉末原料融合来通过融化或通过随后的烧结而形成最终部分。在这两种情况下,过程稳定性和结果部分质量都取决于粉末颗粒与流体相之间的动态相互作用,即熔融金属或液体粘合剂。目前的工作提出了一个多功能计算建模框架,用于模拟涉及热毛细管流和可逆相变的此类耦合的微流体 - 粉状动力学问题。特别是,液体和气相正在与固相相互作用,该固相由底物和移动粉末颗粒组成,同时考虑温度依赖性的表面张力和润湿效应。在激光金属相互作用的情况下,快速蒸发的影响是通过其他机械和热界面通量纳入的。使用平滑的颗粒流体动力学将所有相域在空间离散。该方法的拉格朗日性质在动态变化的界面拓扑的背景下是有益的。对相变的制定进行特殊护理,这对于计算方案的鲁棒性至关重要。尽管基础模型方程具有非常一般的性质,但所提出的框架特别适合各种AM过程的中尺度建模。为此,几个代表特定AM过程的应用程序动机示例证明了计算建模框架的一般性和鲁棒性,这些示例是粘合剂喷射,材料喷射,定向能量沉积和粉末床融合。除其他外,还显示了粘合剂喷射中液滴的动态影响或蒸发诱导的粉末床融合中的后坐压力导致粉末运动,粉末堆积结构的变形和粉末颗粒的射血。

Many additive manufacturing (AM) technologies rely on powder feedstock, which is fused to form the final part either by melting or by chemical binding with subsequent sintering. In both cases, process stability and resulting part quality depend on dynamic interactions between powder particles and a fluid phase, i.e., molten metal or liquid binder. The present work proposes a versatile computational modeling framework for simulating such coupled microfluid-powder dynamics problems involving thermo-capillary flow and reversible phase transitions. In particular, a liquid and a gas phase are interacting with a solid phase that consists of a substrate and mobile powder particles while simultaneously considering temperature-dependent surface tension and wetting effects. In case of laser-metal interactions, the effect of rapid evaporation is incorporated through additional mechanical and thermal interface fluxes. All phase domains are spatially discretized using smoothed particle hydrodynamics. The method's Lagrangian nature is beneficial in the context of dynamically changing interface topologies. Special care is taken in the formulation of phase transitions, which is crucial for the robustness of the computational scheme. While the underlying model equations are of a very general nature, the proposed framework is especially suitable for the mesoscale modeling of various AM processes. To this end, the generality and robustness of the computational modeling framework is demonstrated by several application-motivated examples representing the specific AM processes binder jetting, material jetting, directed energy deposition, and powder bed fusion. Among others, it is shown how the dynamic impact of droplets in binder jetting or the evaporation-induced recoil pressure in powder bed fusion leads to powder motion, distortion of the powder packing structure, and powder particle ejection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源