论文标题
多层VI-GNSS全局定位框架,具有数值解决方案辅助地图初始化
Multi-layer VI-GNSS Global Positioning Framework with Numerical Solution aided MAP Initialization
论文作者
论文摘要
在复杂场景中实现长期无漂移相机姿势估算的目标的动机,我们提出了一个全球定位框架,将视觉,惯性和全球导航卫星系统(GNSS)测量融合了多层。与以前的松散和紧密耦合的方法不同,所提出的多层融合使我们能够精心纠正视觉探针的漂移并在GNSS降低时保持可靠的位置。特别是,在内部层中进行了局部运动估计,通过融合GNSS的速度,惯性测量单元(IMU)的预融合和摄像机测量,以紧密耦合的方式解决了视觉渗透量的规模漂移和不准确的偏置估计。全球定位是在外层层中实现的,在外层层中,局部运动在长期的长期内与GNSS位置和过程进一步融合在一起。此外,提出了一种专门的初始化方法,以确保所有状态变量和参数的快速准确估计。我们对室内和室外公共数据集的拟议框架进行了详尽的测试。平均本地化误差最多减少了63%,与最先进的作品相比,初始化准确性的促进率为69%。我们已将算法应用于增强现实(AR)导航,人群采购高精度地图更新和其他大规模应用程序。
Motivated by the goal of achieving long-term drift-free camera pose estimation in complex scenarios, we propose a global positioning framework fusing visual, inertial and Global Navigation Satellite System (GNSS) measurements in multiple layers. Different from previous loosely- and tightly- coupled methods, the proposed multi-layer fusion allows us to delicately correct the drift of visual odometry and keep reliable positioning while GNSS degrades. In particular, local motion estimation is conducted in the inner-layer, solving the problem of scale drift and inaccurate bias estimation in visual odometry by fusing the velocity of GNSS, pre-integration of Inertial Measurement Unit (IMU) and camera measurement in a tightly-coupled way. The global localization is achieved in the outer-layer, where the local motion is further fused with GNSS position and course in a long-term period in a loosely-coupled way. Furthermore, a dedicated initialization method is proposed to guarantee fast and accurate estimation for all state variables and parameters. We give exhaustive tests of the proposed framework on indoor and outdoor public datasets. The mean localization error is reduced up to 63%, with a promotion of 69% in initialization accuracy compared with state-of-the-art works. We have applied the algorithm to Augmented Reality (AR) navigation, crowd sourcing high-precision map update and other large-scale applications.