论文标题

L空间,拉紧叶和Whitehead链接

L-spaces, taut foliations and the Whitehead link

论文作者

Santoro, Diego

论文摘要

我们证明,如果$ m $是一个理性的同源性领域,它是Whitehead链接上的Dehn手术,那么$ M $不是$ L $ - 空间,并且仅当$ M $支持可协调的taut叶叶子时。通过确定哪些构造的绷紧叶子消失了欧拉类,也证明了其中一些歧管的左有序性。我们还提供了一些有关$ L $ - 空间手术斜坡的结构的更一般结果,该链接的链接未打结,成对链接的数字为零,以及在$ k $ holded torus bundle的填充物上填充圆圈上的刺叶,并带有一些规定的单片构造。我们的结果,加上Roberts-Shareshian-Stein的一些结果,也暗示着所有理性同源性在Whitehead Link上作为整数手术产生的所有理性同源性都满足L-Space的猜想。

We prove that if $M$ is a rational homology sphere that is a Dehn surgery on the Whitehead link, then $M$ is not an $L$-space if and only if $M$ supports a coorientable taut foliation. The left orderability of some of these manifolds is also proved, by determining which of the constructed taut foliations have vanishing Euler class. We also present some more general results about the structure of the $L$-space surgery slopes for links whose components are unknotted and with pairwise linking number zero, and about the existence of taut foliations on the fillings of a $k$-holed torus bundle over the circle with some prescribed monodromy. Our results, combined with some results from Roberts--Shareshian--Stein, also imply that all the rational homology spheres that arise as integer surgeries on the Whitehead link satisfy the L-space conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源