论文标题

Janowski Starlike功能

The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions

论文作者

Malik, Somya, Ali, Rosihan M, Ravichandran, V.

论文摘要

功能$g_α(z)= 1+ z/(1-αz^2)$,\,$ 0 \ leqα<1 $,将开放单位光盘$ \ mathbb {d} $映射到一个被称为booth lemniscate的域内的内部。与此功能相关联的$G_α$是最近引入的类$ \ Mathcal {bs}(α)$,由$ \ Mathbb {d} $上的正常分析功能$ f $组成,满足了下属$ zf'(z)/f(z)/f(z)/f(z)/f(z)\ precG_α(z)$。有趣的是,它与已知类别的$ \ MATHCAL {m} $在意义上的$ g(z)=(z)=(1/r)f(rz)$属于$ \ mathcal {bs}(α)$ in $(0,1)$中的某些$ r $,并且所有$ r $ in \ in \ mathcal in \ mathcal {m mathcal {m} $。我们发现不同类别的最大半径$ r $ $ \ MATHCAL {M} $,尤其是当$ \ Mathcal {M} $是订单$β$的星形函数或Janowski类别类似Starike函数时。作为此目的的主要工具,我们找到了$g_α(\ mathbb {d})$中包含的最大光盘的半径,并以某个点$ a \ in \ mathbb {r} $为中心。

The function $G_α(z)=1+ z/(1-αz^2)$, \, $0\leq α<1$, maps the open unit disc $\mathbb{D}$ onto the interior of a domain known as the Booth lemniscate. Associated with this function $G_α$ is the recently introduced class $\mathcal{BS}(α)$ consisting of normalized analytic functions $f$ on $\mathbb{D}$ satisfying the subordination $zf'(z)/f(z) \prec G_α(z)$. Of interest is its connection with known classes $\mathcal{M}$ of functions in the sense $g(z)=(1/r)f(rz)$ belongs to $\mathcal{BS}(α)$ for some $r$ in $(0,1)$ and all $f \in \mathcal{M}$. We find the largest radius $r$ for different classes $\mathcal{M}$, particularly when $\mathcal{M}$ is the class of starlike functions of order $β$, or the Janowski class of starlike functions. As a primary tool for this purpose, we find the radius of the largest disc contained in $G_α(\mathbb{D})$ and centered at a certain point $a \in \mathbb{R}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源