论文标题
双宽带时间变化的次级terahertz的压缩培训
Compressed Training for Dual-Wideband Time-Varying Sub-Terahertz Massive MIMO
论文作者
论文摘要
6G操作员可以使用毫米波(MMWave)和子terahertz(Sub-Thz)频段来满足对无线访问的不断增长的需求。 Sub-Thz沟通带来了MMWave沟通的许多现有挑战,并增加了与更广泛的带宽,更多的天线和苛刻的传播相关的新挑战。值得注意的是,频率和空间宽带(双宽带)效应在Sub-Thz处很重要。本文提出了一个压缩培训框架,以估计随着时变的sub-thz mimo-ofdm频道。构建了一组频率依赖性阵列响应矩阵,通过多个测量向量(MMV)从跨载体的多个观测值中恢复了通道的恢复。使用时间相关,MMV最小二乘(LS)旨在根据先前的光束支撑估算通道,并将MMV压缩感测(CS)应用于残留信号。我们将其称为MMV-LS-CS框架。为MMV-LS-CS框架提出了两阶段(TS)和MMV Fista(M-Fista)算法。为了利用扩散损失结构,提出了通道改进算法来估计主要路径的路径系数和时间延迟。为了降低计算复杂性并增强光束分辨率,开发了使用层次代码书的顺序搜索方法。数值结果表明,MMV-LS-CS比最新技术的通道估计精度提高了。
6G operators may use millimeter wave (mmWave) and sub-terahertz (sub-THz) bands to meet the ever-increasing demand for wireless access. Sub-THz communication comes with many existing challenges of mmWave communication and adds new challenges associated with the wider bandwidths, more antennas, and harsher propagations. Notably, the frequency- and spatial-wideband (dual-wideband) effects are significant at sub-THz. This paper presents a compressed training framework to estimate the time-varying sub-THz MIMO-OFDM channels. A set of frequency-dependent array response matrices are constructed, enabling channel recovery from multiple observations across subcarriers via multiple measurement vectors (MMV). Using the temporal correlation, MMV least squares (LS) is designed to estimate the channel based on the previous beam support, and MMV compressed sensing (CS) is applied to the residual signal. We refer to this as the MMV-LS-CS framework. Two-stage (TS) and MMV FISTA-based (M-FISTA) algorithms are proposed for the MMV-LS-CS framework. Leveraging the spreading loss structure, a channel refinement algorithm is proposed to estimate the path coefficients and time delays of the dominant paths. To reduce the computational complexity and enhance the beam resolution, a sequential search method using hierarchical codebooks is developed. Numerical results demonstrate the improved channel estimation accuracy of MMV-LS-CS over state-of-the-art techniques.