论文标题

金字塔:与金字塔体系结构改进的变压器内变压器基线

PyramidTNT: Improved Transformer-in-Transformer Baselines with Pyramid Architecture

论文作者

Han, Kai, Guo, Jianyuan, Tang, Yehui, Wang, Yunhe

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Transformer networks have achieved great progress for computer vision tasks. Transformer-in-Transformer (TNT) architecture utilizes inner transformer and outer transformer to extract both local and global representations. In this work, we present new TNT baselines by introducing two advanced designs: 1) pyramid architecture, and 2) convolutional stem. The new "PyramidTNT" significantly improves the original TNT by establishing hierarchical representations. PyramidTNT achieves better performances than the previous state-of-the-art vision transformers such as Swin Transformer. We hope this new baseline will be helpful to the further research and application of vision transformer. Code will be available at https://github.com/huawei-noah/CV-Backbones/tree/master/tnt_pytorch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源