论文标题

神经分段恒定延迟微分方程

Neural Piecewise-Constant Delay Differential Equations

论文作者

Zhu, Qunxi, Shen, Yifei, Li, Dongsheng, Lin, Wei

论文摘要

近年来,连续的深入神经网络(例如神经普通微分方程(ODE))引起了机器学习和数据科学社区的极大兴趣,这些社区弥合了深层神经网络与动态系统之间的联系。在本文中,我们介绍了一种新的连续深度神经网络,称为神经分段延迟差分方程(PCDDES)。在这里,与最近提出的神经延迟微分方程(DDES)的框架不同,我们将单个延迟转换为分段恒定延迟。一方面,具有这种转化的神经PCDES继承了神经DDES中通用近似能力的强度。另一方面,神经PCDD利用了从多个之前的时间步骤中的信息的贡献,进一步促进了建模能力而无需增强网络维度。通过这样的促销,我们表明神经PCDD确实在一维分段延迟延迟群体动力学和现实世界数据集上胜过几个现有的连续深度神经框架,包括MNIST,CIFAR10和SVHN。

Continuous-depth neural networks, such as the Neural Ordinary Differential Equations (ODEs), have aroused a great deal of interest from the communities of machine learning and data science in recent years, which bridge the connection between deep neural networks and dynamical systems. In this article, we introduce a new sort of continuous-depth neural network, called the Neural Piecewise-Constant Delay Differential Equations (PCDDEs). Here, unlike the recently proposed framework of the Neural Delay Differential Equations (DDEs), we transform the single delay into the piecewise-constant delay(s). The Neural PCDDEs with such a transformation, on one hand, inherit the strength of universal approximating capability in Neural DDEs. On the other hand, the Neural PCDDEs, leveraging the contributions of the information from the multiple previous time steps, further promote the modeling capability without augmenting the network dimension. With such a promotion, we show that the Neural PCDDEs do outperform the several existing continuous-depth neural frameworks on the one-dimensional piecewise-constant delay population dynamics and real-world datasets, including MNIST, CIFAR10, and SVHN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源