论文标题

超导处理器上的量子电路架构搜索

Quantum circuit architecture search on a superconducting processor

论文作者

Linghu, Kehuan, Qian, Yang, Wang, Ruixia, Hu, Meng-Jun, Li, Zhiyuan, Li, Xuegang, Xu, Huikai, Zhang, Jingning, Ma, Teng, Zhao, Peng, Liu, Dong E., Hsieh, Min-Hsiu, Wu, Xingyao, Du, Yuxuan, Tao, Dacheng, Jin, Yirong, Yu, Haifeng

论文摘要

变异量子算法(VQA)表现出了强烈的证据,可以在金融,机器学习和化学等各种领域获得可证明的计算优势。但是,在现代VQA中利用的启发式ANSATZ无法平衡表达性和训练性之间的权衡,这可能会导致在嘈杂的中间尺度量子(NISQ)机器上执行时的性能。为了解决这个问题,我们在这里演示了使用有效的自动ANSATZ设计技术(即量子体系结构搜索(QAS))的第一个原理证明实验,以增强8 Quient的超导量子处理器上的VQA。特别是,我们将QAS应用于对硬件有效的ANSATZ量身定制的分类任务。与启发式Ansatze相比,由QAS设计的ANSATZ将测试准确性从31%提高到98%。我们通过可视化所有ANSATZE的有效参数来进一步解释这一卓越的性能。我们的工作为开发可变的Ansatze提供了具体的指导,以解决各种大规模量子学习问题,并具有优势。

Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry. However, the heuristic ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability, which may lead to the degraded performance when executed on the noisy intermediate-scale quantum (NISQ) machines. To address this issue, here we demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique, i.e., quantum architecture search (QAS), to enhance VQAs on an 8-qubit superconducting quantum processor. In particular, we apply QAS to tailor the hardware-efficient ansatz towards classification tasks. Compared with the heuristic ansatze, the ansatz designed by QAS improves test accuracy from 31% to 98%. We further explain this superior performance by visualizing the loss landscape and analyzing effective parameters of all ansatze. Our work provides concrete guidance for developing variable ansatze to tackle various large-scale quantum learning problems with advantages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源