论文标题
来自剥离式恒星的热核和电子捕获超新星
Thermonuclear and Electron-Capture Supernovae from Stripped-Envelope Stars
论文作者
论文摘要
(删节)当从其富含氢的信封中剥离时,最初质量在$ \ sim $ 7到11 m $ _ $ _ \ odot $的星星会产生巨大的退化核心并崩溃。根据最终结构和组成,结果可以从热核爆炸到电子捕获超新星(ECSN)中中子星的形成。最近已经证明,当其中心密度仍低于$ρ_ {\ rm c} \ Lessim 10^{9.6} $ G cm $ $^{ - 3} $时,质量范围内的恒星可能会引发爆炸性氧气燃烧。这使他们成为IA型超新星的有趣候选者(我们称之为一sne ia),并且可能对通过Ecsne形成中子星的形成具有更大的影响。在这里,我们对252架氦星的演变进行建模,初始质量在$ 0.8-3.5 $ m $ _ \ odot $范围内,以及$ z = 10^{ - 4} $和$ 0.02 $之间的金属。我们使用这些模型来限制爆炸性氧气点火时的中心密度,成分和包膜质量。我们进一步研究了这些特性对质量损失率假设的敏感性,使用具有不同风效率的其他模型。我们发现,具有$ \ sim $ \ sim $ 1.8至2.7 m $ _ \ odot $ Evolve $ 1.35-1.37 $ m $ m $ m $ _ \ odot $(c)的氦气星的氦气在$ \ rm \ rm \ rm \ rm \ log_ {10}(ρ_c)\ sim 9.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6. 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 $ \ odot $ _ \ odot $中。我们限制了核心碳燃烧后保留的残留碳的数量,并得出结论,它在确定最终结果中起着至关重要的作用:Chandrasekhar-Mass退化核心,该核心保留了$ \ sim 0.005 $ \ sim 0.005 $ m $ _ \ odot $ _ \ odot $ odot $ odot $ odot $ odot car in(c)一个SNE IA中的碳质量下降,而低碳则是碳质量的。我们发现(c)一个SNE IA更可能以高金属性发生,而在低金属度下,Ecsne占主导地位。
(abridged) When stripped from their hydrogen-rich envelopes, stars with initial masses between $\sim$7 and 11 M$_\odot$ develop massive degenerate cores and collapse. Depending on the final structure and composition, the outcome can range from a thermonuclear explosion, to the formation of a neutron star in an electron-capture supernova (ECSN). It has been recently demonstrated that stars in this mass range may initiate explosive oxygen burning when their central densities are still below $ρ_{\rm c} \lesssim 10^{9.6}$ g cm$^{-3}$. This makes them interesting candidates for type Ia supernovae -- which we call (C)ONe SNe Ia -- and might have broader implications for the formation of neutron stars via ECSNe. Here, we model the evolution of 252 helium stars with initial masses in the $0.8-3.5$ M$_\odot$ range, and metallicities between $Z=10^{-4}$ and $0.02$. We use these models to constrain the central densities, compositions and envelope masses at the time of explosive oxygen ignition. We further investigate the sensitivity of these properties to mass loss rate assumptions using additional models with varying wind efficiencies. We find that helium stars with masses between $\sim$1.8 and 2.7 M$_\odot$ evolve onto $1.35-1.37$ M$_\odot$ (C)ONe cores that initiate explosive burning at central densities between $\rm \log_{10}(ρ_c)\sim 9.3$ and 9.6. We constrain the amount of residual carbon retained after core carbon burning, and conclude that it plays a critical role in determining the final outcome: Chandrasekhar-mass degenerate cores that retain more than $\sim 0.005$ M$_\odot$ of carbon result in (C)ONe SNe Ia, while those with lower carbon mass become ECSNe. We find that (C)ONe SNe Ia are more likely to occur at high metallicities, whereas at low metallicities ECSNe dominate.