论文标题
与罗马太空望远镜的运动学镜头
Kinematic Lensing with the Roman Space Telescope
论文作者
论文摘要
运动学镜头(KL)是一种新的宇宙学测量技术,结合了传统的弱透镜(WL)形状的圆盘星系和运动信息。使用Tully-fisher关系KL可以打破固有和观察到的椭圆度之间的堕落性,并显着降低了传统WL中存在多种系统的影响。我们探索了KL的性能,因为假设高纬度成像调查(HLIS)重叠,高纬度光谱调查(HLSS)超过2,000 v $^2 $,则$ \ textit {Roman Space望远镜} $的仪器能力。我们的KL合适的星系样品的数量密度为$ n _ {\ Mathrm {gal}} = 4〜 \ Mathrm {arcmin}^{ - 1} $,其估计形状噪声水平为$σ_im= 0.035 $。我们通过运行模拟的可能性分析来量化$ω_ {\ mathrm {m}} $ - $ s_8 $,$ s_8 $,$ s_8 $,$ s_8 $,$ω_ {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM {\ MATHRM)的功率的宇宙学约束功率的量化,该模拟的可能分析可说明重新换档和剪切校准不确定性,本质和剪切反馈。与传统的WL调查相比,我们发现KL显着提高了$ω_ {\ Mathrm {M}} $ - $ S_8 $(FOM $ _ {\ MATHRM {KL}} $ = 1.70fom $ _ { (FOM $ _ {\ MATHRM {KL}} $ = 3.65fom $ _ {\ Mathrm {wl}} $)。我们还使用30个而不是默认的10层造影箱探索了“狭窄的层析成像KL调查”,但是即使假设在我们的基金会深色能量输入方案中具有显着的时间依赖性,我们也没有发现对FOM的有意义的增强。
Kinematic lensing (KL) is a new cosmological measurement technique that combines traditional weak lensing (WL) shape measurements of disc galaxies with their kinematic information. Using the Tully-Fisher relation KL breaks the degeneracy between intrinsic and observed ellipticity and significantly reduces the impact of multiple systematics that are present in traditional WL. We explore the performance of KL given the instrument capabilities of the $\textit{Roman Space Telescope}$, assuming overlap of the High Latitude Imaging Survey (HLIS), the High Latitude Spectroscopy Survey (HLSS) over 2,000 deg$^2$. Our KL suitable galaxy sample has a number density of $n_{\mathrm{gal}}=4~\mathrm{arcmin}^{-1}$ with an estimated shape noise level of $σ_ε=0.035$. We quantify the cosmological constraining power on $Ω_{\mathrm{m}}$-$S_8$, $w_p$-$w_a$ by running simulated likelihood analyses that account for redshift and shear calibration uncertainties, intrinsic alignment and baryonic feedback. Compared to a traditional WL survey we find that KL significantly improves the constraining power on $Ω_{\mathrm{m}}$-$S_8$ (FoM$_{\mathrm{KL}}$=1.70FoM$_{\mathrm{WL}}$) and $w_p$-$w_a$ (FoM$_{\mathrm{KL}}$=3.65FoM$_{\mathrm{WL}}$). We also explore a "narrow tomography KL survey" using 30 instead of the default 10 tomographic bins, however we find no meaningful enhancement to the FoM even when assuming a significant time-dependence in our fiducial dark energy input scenarios.