论文标题

爱因斯坦 - 非线性西格玛模型中的平行波

Parallel waves in Einstein-non linear sigma models

论文作者

Bonga, Béatrice, Dotti, Gustavo

论文摘要

我们研究了Einstein-Non线性Sigma模型的解决方案系列,其中$ s^2 $和$ su(2)\ sim s^3 $目标歧管。在$ s^2 $的情况下,解决方案无处不在,没有圆锥形的奇异性,并渐近接近宇宙弦的指标,其每长度的质量与绕线数的绝对值与目标$ s^2 $成正比。这给出了一个有趣的例子,说明了质量和拓扑电荷之间的关系。 Target $ SU(2)的案例概括了EUR中发现的固定解决方案。物理。 J. C(2021)81:55到具有非平面波前$ \ MATHCAL {W} $的平行波。我们证明,这些$ \ Mathcal {W} $ - 前沿波浪在类中的分类中是子季节。量子。坟墓。 \ textbf {20}(2003)2275,因此行为良好。这些空间具有非散发性的重子电流,它们的几何形状具有许多引人注目的特征。

We study a family of solutions of Einstein-non linear sigma models with $S^2$ and $SU(2) \sim S^3$ target manifolds. In the $S^2$ case, the solutions are smooth everywhere, free of conical singularities, and approach asymptotically the metric of a cosmic string, with a mass per length that is proportional to the absolute value of the winding number from topological spheres onto the target $S^2$. This gives an interesting example of a relation between a mass and a topological charge. The case with target $SU(2)$ generalizes the stationary solution found in Eur. Phys. J. C (2021) 81:55 to parallel waves with a non-planar wavefront $\mathcal{W}$. We prove that these $\mathcal{W}$-fronted parallel waves are sub-quadratic in the classification in Class. Quant. Grav. \textbf{20} (2003) 2275, and thus causally well behaved. These spacetimes have a non-vanishing baryon current and their geometry has many striking features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源