论文标题
里曼的最后定理
Riemann's Last Theorem
论文作者
论文摘要
本文的核心思想是介绍并证明Zeta函数的一种特殊形式,作为Riemann最后一个定理的证明。新提出的Zeta功能包含两个子功能,即$ f_1(b,s)$和$ f_2(b,s)$。 $ζ(s)= f_1(b,s)-f_2(b,s)$的唯一属性是,随着倾向于无穷大的相等性$ζ(s)=ζ(1-s)$被转化为Zeta函数零零的指数表达式。在限制点,我们只需在且仅当$ \ mathfrak {r}(s)= 1/2 $时就可以满足指数平等的满足。因此,我们得出结论,如果$ \ mathfrak {r}(s)\ ne 1/2 $,Zeta函数不能为零,因此证明了Riemann的最后定理。
The central idea of this article is to introduce and prove a special form of the zeta function as proof of Riemann's last theorem. The newly proposed zeta function contains two sub functions, namely $f_1(b,s)$ and $f_2(b,s)$. The unique property of $ζ(s)=f_1(b,s)-f_2(b,s)$ is that as tends toward infinity the equality $ζ(s)=ζ(1-s)$ is transformed into an exponential expression for the zeros of the zeta function. At the limiting point, we simply deduce that the exponential equality is satisfied if and only if $\mathfrak{R}(s)=1/2$. Consequently, we conclude that the zeta function cannot be zero if $\mathfrak{R}(s)\ne 1/2$, hence proving Riemann's last theorem.