论文标题

具有特征依赖性betti数字的单一理想的力量

Powers of monomial ideals with characteristic-dependent Betti numbers

论文作者

Bolognini, Davide, Macchia, Antonio, Strazzanti, Francesco, Welker, Volkmar

论文摘要

我们探讨了单一理想的贝蒂数量对田地特征的依赖性。第一个观察结果是,对于固定的prime $ p $,$ i $ th的betti数量是单一理想的所有足够高功率的特征$ 0 $和特征$ p $的不同之处,或者对于所有高功率而言相同。在我们的主要结果中,我们提供了单一理想的结构和明确的例子,所有功能都具有某些特征性依赖性的贝蒂数,或者其渐近规则性取决于该领域。我们证明,将新变量对单一理想添加了一个单一的理想,可以将特征依赖性传播到所有力量。对于任何给定的Prime $ P $,这都会产生一个优势理想,因此其所有功率的Betti数字超过$ \ Mathbb {q} $,而$ \ Mathbb {z} _p $却不同。此外,我们表明,对于每$ r \ geq 0 $和$ i \ geq 3 $,都有一个单一的理想$ i $,以便在kodiyalam polyenmials $ \ mathfrak p_3(i),\ ldots,\ ldots,\ mathfrak p_ p_ p_ p_ p_ p_ p_ p_ p_ p_ p_ p_ p_ rdots $ \ mathfrak p_3(i+r p_ interivation $ \ geq r $ of geq r $中我们还提供了相关结果的摘要,并推测了其他组合定义的理想的行为。

We explore the dependence of the Betti numbers of monomial ideals on the characteristic of the field. A first observation is that for a fixed prime $p$ either the $i$-th Betti number of all high enough powers of a monomial ideal differs in characteristic $0$ and in characteristic $p$ or it is the same for all high enough powers. In our main results we provide constructions and explicit examples of monomial ideals all of whose powers have some characteristic-dependent Betti numbers or whose asymptotic regularity depends on the field. We prove that, adding a monomial on new variables to a monomial ideal, allows to spread the characteristic dependence to all powers. For any given prime $p$, this produces an edge ideal such that the Betti numbers of all its powers over $\mathbb{Q}$ and over $\mathbb{Z}_p$ are different. Moreover, we show that, for every $r \geq 0$ and $i \geq 3$ there is a monomial ideal $I$ such that some coefficient in a degree $\geq r$ of the Kodiyalam polynomials $\mathfrak P_3(I),\ldots,\mathfrak P_{i+r}(I)$ depends on the characteristic. We also provide a summary of related results and speculate about the behaviour of other combinatorially defined ideals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源