论文标题
级联的不对称局部模式:无约束面部图像识别和检索的新颖描述
Cascaded Asymmetric Local Pattern: A Novel Descriptor for Unconstrained Facial Image Recognition and Retrieval
论文作者
论文摘要
功能描述是专家系统和机器学习中最经常研究的领域之一。图像的有效编码是准确匹配的必不可少的要求。这些编码方案在识别和检索系统中起着重要作用。面部识别系统应足够有效,以准确地识别系统内在和外在变化下的个体。这些系统中使用的模板或描述符编码图像本地社区中像素的空间关系。使用这些手工制作的描述符编码的功能应与诸如诸如:照明,背景,姿势和表达。在本文中,提出了一种新型的手工制作的级联级联局部模式(CALP),以检索和识别面部图像。所提出的描述符唯一地编码在水平和垂直方向上相邻像素之间的关系。所提出的编码方案具有最佳特征长度,并且在面部图像的环境和生理变化下,准确性显着提高。最艺术的手工制作的描述符,即将LBP,LDGP,CSLBP,SLBP和CSLTP与最具挑战性数据集的所提出的描述符进行比较。 Caltech-FACE,LFW和CASIA-FACE-V5。结果分析表明,在表达,背景,姿势和照明的不受控制的变化下,提出的描述符优于最新的最新水平状态。
Feature description is one of the most frequently studied areas in the expert systems and machine learning. Effective encoding of the images is an essential requirement for accurate matching. These encoding schemes play a significant role in recognition and retrieval systems. Facial recognition systems should be effective enough to accurately recognize individuals under intrinsic and extrinsic variations of the system. The templates or descriptors used in these systems encode spatial relationships of the pixels in the local neighbourhood of an image. Features encoded using these hand crafted descriptors should be robust against variations such as; illumination, background, poses, and expressions. In this paper a novel hand crafted cascaded asymmetric local pattern (CALP) is proposed for retrieval and recognition facial image. The proposed descriptor uniquely encodes relationship amongst the neighbouring pixels in horizontal and vertical directions. The proposed encoding scheme has optimum feature length and shows significant improvement in accuracy under environmental and physiological changes in a facial image. State of the art hand crafted descriptors namely; LBP, LDGP, CSLBP, SLBP and CSLTP are compared with the proposed descriptor on most challenging datasets namely; Caltech-face, LFW, and CASIA-face-v5. Result analysis shows that, the proposed descriptor outperforms state of the art under uncontrolled variations in expressions, background, pose and illumination.