论文标题

Beauville-voisin滤过量稳定束带的零周期稳定束带的零周期

Beauville-Voisin filtrations on zero cycles of moduli space of stable sheaves on K3 surfaces

论文作者

Li, Zhiyuan, Zhang, Ruxuan

论文摘要

Beauville-voisin猜想预测了与猜想的Bloch-Beilinson过滤相反的射影型超卡勒歧管的过滤,称为Beauivlle-voisin滤过。 Voisin对任意投射Hyper-Kähler歧管的零周期进行了过滤。在投影K3表面的稳定物体的模量空间上,还有其他候选者,由Shen-Yin-Zhao,Barros-Flapan-Marian-Milversmith构建,而最近是Vial从不同的观点制造的。根据VIAL的工作,除了Voisin的过滤外,所有这些都被证明是等效的。在本文中,我们表明Voisin的过滤与其他过滤相同。作为应用程序,我们证明了Barros-Flapan-Marian-Silversmith的论文中的猜想。

The Beauville-Voisin conjecture predicts the existence of a filtration on projective hyper-Kähler manifolds opposite to the conjecture Bloch-Beilinson filtration, called the Beauivlle-Voisin filtration. Voisin has introduced a filtration on zero cycles of an arbitrary projective hyper-Kähler manifold. On moduli space of stable objects of a projective K3 surface, there are other candidates constructed by Shen-Yin-Zhao, Barros-Flapan-Marian-Silversmith and more recently by Vial from different point of views. According to the work of Vial, all of them are proved to be equivalent except Voisin's filtration. In this paper, we show that Voisin's filtration is the same as the other filtrations. As an application, we prove a conjecture in Barros-Flapan-Marian-Silversmith's paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源