论文标题
在Slico Superpixel约束下,通过LTP纹理表征LTP纹理表征显着对象检测
Salient Object Detection by LTP Texture Characterization on Opposing Color Pairs under SLICO Superpixel Constraint
论文作者
论文摘要
人类对显着物体的毫无用处的检测一直是许多领域的研究主题,包括计算机视觉,因为它具有许多应用程序。但是,对于许多处理颜色和纹理图像的计算机模型,显着对象检测仍然是一个挑战。本文中,我们通过一个简单的模型提出了一种新颖而有效的策略,几乎没有内部参数,从而为自然图像生成了强大的显着性图。该策略包括将颜色信息集成到本地纹理模式中,以表征颜色微文本。文献中的大多数模型都使用颜色和纹理特征分别对其进行处理。在我们的情况下,它是应用于颜色空间的相对颜色对的简单而功能强大的LTP(本地三元图案)纹理描述符,使我们能够实现这一目标。每个颜色的微观文本都由向量表示,其组件来自Slico获得的超像素(简单的线性迭代群集,具有零参数)算法,该算法简单,快速且表现出最新的边界依从性。每对颜色微观文本之间的差异程度是通过快速图方法(快速版本的MDS(多维缩放))计算的,它考虑了颜色微文本在保留距离的同时具有非线性。这些差异程度为我们提供了每个RGB,HSL,LUV和CMY颜色空间的中间显着性图。最终的显着图是它们的组合,以利用它们每个人的强度。在复杂的ECSD数据集上,MAE(平均绝对误差)和F $_β$测量表明,我们的模型既简单又有效,表现优于几个最新模型。
The effortless detection of salient objects by humans has been the subject of research in several fields, including computer vision as it has many applications. However, salient object detection remains a challenge for many computer models dealing with color and textured images. Herein, we propose a novel and efficient strategy, through a simple model, almost without internal parameters, which generates a robust saliency map for a natural image. This strategy consists of integrating color information into local textural patterns to characterize a color micro-texture. Most models in the literature that use the color and texture features treat them separately. In our case, it is the simple, yet powerful LTP (Local Ternary Patterns) texture descriptor applied to opposing color pairs of a color space that allows us to achieve this end. Each color micro-texture is represented by vector whose components are from a superpixel obtained by SLICO (Simple Linear Iterative Clustering with zero parameter) algorithm which is simple, fast and exhibits state-of-the-art boundary adherence. The degree of dissimilarity between each pair of color micro-texture is computed by the FastMap method, a fast version of MDS (Multi-dimensional Scaling), that considers the color micro-textures non-linearity while preserving their distances. These degrees of dissimilarity give us an intermediate saliency map for each RGB, HSL, LUV and CMY color spaces. The final saliency map is their combination to take advantage of the strength of each of them. The MAE (Mean Absolute Error) and F$_β$ measures of our saliency maps, on the complex ECSSD dataset show that our model is both simple and efficient, outperforming several state-of-the-art models.