论文标题

光场图像超级分辨率的细节保护变压器

Detail-Preserving Transformer for Light Field Image Super-Resolution

论文作者

Wang, Shunzhou, Zhou, Tianfei, Lu, Yao, Di, Huijun

论文摘要

最近,已经开发了许多算法来解决光场超分辨率(LFSR)的问题,即,超解决的低分辨率光场以获得高分辨率的视图。尽管取得了令人鼓舞的结果,但这些方法都是基于卷积的,并且在亚孔表图像的全球关系建模中自然较弱,以表征光场的固有结构。在本文中,我们通过将LFSR视为序列到序列重建任务,提出了一种基于变压器的新颖配方。特别是,我们的模型将每个垂直或水平角度视图的子孔径图像视为一个序列,并通过空间角度增强的自我注意力层在每个序列内建立远程几何依赖性,从而维持每个亚辅助图像的局部性。此外,为了更好地恢复图像细节,我们通过利用光场的梯度图来指导序列学习,提出了一个详细信息的变压器(称为DPT)。 DPT由两个分支组成,每个分支都与用于从原始或梯度图像序列学习的变压器相关联。这两个分支最终被融合以获得重建的全面特征表示。评估是在许多光场数据集上进行的,包括实际场景和合成数据。所提出的方法与其他最先进的方案相比,实现了卓越的性能。我们的代码可公开可用:https://github.com/bitszwang/dpt。

Recently, numerous algorithms have been developed to tackle the problem of light field super-resolution (LFSR), i.e., super-resolving low-resolution light fields to gain high-resolution views. Despite delivering encouraging results, these approaches are all convolution-based, and are naturally weak in global relation modeling of sub-aperture images necessarily to characterize the inherent structure of light fields. In this paper, we put forth a novel formulation built upon Transformers, by treating LFSR as a sequence-to-sequence reconstruction task. In particular, our model regards sub-aperture images of each vertical or horizontal angular view as a sequence, and establishes long-range geometric dependencies within each sequence via a spatial-angular locally-enhanced self-attention layer, which maintains the locality of each sub-aperture image as well. Additionally, to better recover image details, we propose a detail-preserving Transformer (termed as DPT), by leveraging gradient maps of light field to guide the sequence learning. DPT consists of two branches, with each associated with a Transformer for learning from an original or gradient image sequence. The two branches are finally fused to obtain comprehensive feature representations for reconstruction. Evaluations are conducted on a number of light field datasets, including real-world scenes and synthetic data. The proposed method achieves superior performance comparing with other state-of-the-art schemes. Our code is publicly available at: https://github.com/BITszwang/DPT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源