论文标题

项目响应数据的因子树副本模型

Factor tree copula models for item response data

论文作者

Kadhem, Sayed H., Nikoloulopoulos, Aristidis K.

论文摘要

当可以通过潜在变量来解释依赖性时,用于项目响应数据的因子副本模型比(截短的)葡萄藤模型更容易解释,并且更拟合,但对违反条件独立性的行为并不强大。为了避免这些问题,将截短的藤蔓和用于项目响应数据的因子模型定义了一个合并的模型,即所谓的因子树copula模型,并从两种方法中的每种方法中都受益。在一个或两个潜在变量的有条件的残留物上假设,假定截短的藤蔓结构并没有添加因素并引起计算问题和造成解释和识别困难。考虑到一些可解释的潜在变量,可以更好地解释该结构为条件依赖性。一方面,因子模型的副本特征仍然完好无损,并且在另一方面考虑了任何残留依赖性。我们讨论估计以及模型选择。特别是,我们提出模型选择算法来选择一个合理的因子树模型模型,以捕获项目响应之间的(残留)依赖性。通过广泛的模拟研究证明了我们的一般方法论,并通过分析创伤后应激障碍来说明。

Factor copula models for item response data are more interpretable and fit better than (truncated) vine copula models when dependence can be explained through latent variables, but are not robust to violations of conditional independence. To circumvent these issues, truncated vines and factor copula models for item response data are joined to define a combined model, the so-called factor tree copula model, with individual benefits from each of the two approaches. Rather than adding factors and causing computational problems and difficulties in interpretation and identification, a truncated vine structure is assumed on the residuals conditional on one or two latent variables. This structure can be better explained as a conditional dependence given a few interpretable latent variables. On the one hand, the parsimonious feature of factor models remains intact and any residual dependencies are being taken into account on the other. We discuss estimation along with model selection. In particular, we propose model selection algorithms to choose a plausible factor tree copula model to capture the (residual) dependencies among the item responses. Our general methodology is demonstrated with an extensive simulation study and illustrated by analyzing Post Traumatic Stress Disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源