论文标题
非线性Anderson在任意障碍处的本地化状态
Nonlinear Anderson localized states at arbitrary disorder
论文作者
论文摘要
这是经典的,遵循Furstenberg对随机SL $(2,\ Mathbb r)$矩阵的产品的阳性Lyapunov指数的定理,一维随机Schrödinger操作员将Anderson定位在任意疾病中。本文证明了一个非线性类似物,从而为不可融合系统建立了KAM型持久性结果。
It is classical, following Furstenberg's theorem on positive Lyapunov exponent for products of random SL$(2, \mathbb R)$ matrices, that the one dimensional random Schrödinger operator has Anderson localization at arbitrary disorder. This paper proves a nonlinear analogue, thereby establishing a KAM-type persistence result for a non-integrable system.