论文标题

LookHops:图形分类的光多阶卷积和合并

LookHops: light multi-order convolution and pooling for graph classification

论文作者

Gao, Zhangyang, Lin, Haitao, Li, Stan. Z

论文摘要

卷积和合并是学习图形分类的层次结构表示的关键操作,其中表达式$ k $ - 订单($ k> 1 $)方法需要更多的计算成本,从而限制了更多的应用程序。在本文中,我们调查了通过邻里信息增益选择$ K $的策略,并提出了$ k $ order订单卷积和汇总,在改善性能的同时需要更少的参数。通过六个图形分类基准进行的全面和公平的实验显示:1)绩效改进与$ k $ - 订单信息增益一致。 2)拟议的卷积需要更少的参数,同时提供竞争结果。 3)拟议的合并在效率和性能方面优于SOTA算法。

Convolution and pooling are the key operations to learn hierarchical representation for graph classification, where more expressive $k$-order($k>1$) method requires more computation cost, limiting the further applications. In this paper, we investigate the strategy of selecting $k$ via neighborhood information gain and propose light $k$-order convolution and pooling requiring fewer parameters while improving the performance. Comprehensive and fair experiments through six graph classification benchmarks show: 1) the performance improvement is consistent to the $k$-order information gain. 2) the proposed convolution requires fewer parameters while providing competitive results. 3) the proposed pooling outperforms SOTA algorithms in terms of efficiency and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源