论文标题

有限元外排石的HP层次结构框架

An hp-hierarchical framework for the finite element exterior calculus

论文作者

Gates, Robert L., Bittens, Maximilian

论文摘要

在歧管上求解部分微分方程(PDE)的问题可以被认为是计算多物理学中遇到的最通用的问题公式之一。平衡定律的所需协变形式以及本构闭合关系的相应协变形式使用差异形式或相关代数概念的束值的外部计算自然表达。可以说,此类PDE问题的适当解决方案方法由有限元外观演算(FEEC)给出。本文的目的是对适用于FEEC的一般HP适应性的简单,有效的可实现框架的阐述。开发了与问题无关的光谱误差指示灯,该光谱误差指示灯估计多项式系数的误差和光谱衰减。光谱衰减速率被视为多项式订单分布的可接受性指标。最后,通过基本计算示例,它试图证明该方法作为工程工具的功能。

The problem of solving partial differential equations (PDEs) on manifolds can be considered to be one of the most general problem formulations encountered in computational multi-physics. The required covariant forms of balance laws as well as the corresponding covariant forms of the constitutive closing relations are naturally expressed using the bundle-valued exterior calculus of differential forms or related algebraic concepts. It can be argued that the appropriate solution method to such PDE problems is given by the finite element exterior calculus (FEEC). The aim of this essay is the exposition of a simple, efficiently-implementable framework for general hp-adaptivity applicable to the FEEC on higher-dimensional manifolds. A problem-independent spectral error-indicator is developed which estimates the error and the spectral decay of polynomial coefficients. The spectral decay rate is taken as an admissibility indicator on the polynomial order distribution. Finally, by elementary computational examples, it is attempted to demonstrate the power of the method as an engineering tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源