论文标题

一组亚集的跨交叉族家庭的最大尺寸总和

The maximum sum of sizes of cross-intersecting families of subsets of a set

论文作者

Borg, Peter, Feghali, Carl

论文摘要

一组被称为家庭。如果$ \ Mathcal {a} $相交的每个成员相交的每个成员$ \ Mathcal {b} $,则两个家庭$ \ MATHCAL {a} $和$ \ MATHCAL {B} $ sets $ sets $。对于任何两个整数$ n $和$ k $,带有$ 1 \ leq k \ leq n $,让$ {[n] \ select \ leq k} $表示$ [n] = \ {1,\ dots,n \} $的子集的家族。我们表明,如果$ {a} $是$ {[n] \ select \ leq r} $的非空的亚家族,$ \ nathcal {b} $是$ {[n] \ select of $ {[n] $ \ MATHCAL {B} $是交叉截距,然后\ [| \ Mathcal {a} | + | \ Mathcal {B} | \ leq 1 + \ sum_ {i = 1}^s \ left({n \ select i} - {n -r \ select i} \ right),\],\],如果$ \ mathcal {a} = \ {a} = \ {a} = \ {[r]那相交$ [r] $。

A set of sets is called a family. Two families $\mathcal{A}$ and $\mathcal{B}$ of sets are said to be cross-intersecting if each member of $\mathcal{A}$ intersects each member of $\mathcal{B}$. For any two integers $n$ and $k$ with $1 \leq k \leq n$, let ${[n] \choose \leq k}$ denote the family of subsets of $[n] = \{1, \dots, n\}$ that have at most $k$ elements. We show that if $\mathcal{A}$ is a non-empty subfamily of ${[n] \choose \leq r}$, $\mathcal{B}$ is a non-empty subfamily of ${[n] \choose \leq s}$, $r \leq s$, and $\mathcal{A}$ and $\mathcal{B}$ are cross-intersecting, then \[|\mathcal{A}| + |\mathcal{B}| \leq 1 + \sum_{i=1}^s \left({n \choose i} - {n-r \choose i} \right),\] and equality holds if $\mathcal{A} = \{[r]\}$ and $\mathcal{B}$ is the family of sets in ${[n] \choose \leq s}$ that intersect $[r]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源