论文标题
关于解决方案的不同性扰动SPDE的可不同性能
On the differentiability of solutions to singularly perturbed SPDEs
论文作者
论文摘要
我们考虑在希尔伯特空间上的半连接随机演化方程,具有乘法维也纳噪声和类型的$ a + a + \ varepsilon g $的线性漂移项,其中$ a $ a $ a和$ g $ g $最大单调操作员和$ \ varepsilon $ a“小”参数与$ \ varepsilon $ \ varepsilon acks of Mimel solutions and Lights solutions。操作员$ g $可以是$ a $的单数扰动,因为它的域可能严格包含在$ a $的域中。
We consider semilinear stochastic evolution equations on Hilbert spaces with multiplicative Wiener noise and linear drift term of the type $A + \varepsilon G$, with $A$ and $G$ maximal monotone operators and $\varepsilon$ a "small" parameter, and study the differentiability of mild solutions with respect to $\varepsilon$. The operator $G$ can be a singular perturbation of $A$, in the sense that its domain can be strictly contained in the domain of $A$.