论文标题

TAFT代数的Drinfeld双重的张量表示

Tensor Representations for the Drinfeld Double of the Taft Algebra

论文作者

Benkart, Georgia, Biswal, Rekha, Kirkman, Ellen, Nguyen, Van C., Zhu, Jieru

论文摘要

在代数封闭的字段$ \ mathbb k $的特征零,drinfeld double $ d_n $是使用unity $ q \ in \ mathbb k $ in \ n \ geq 2 $ for $ n \ geq 2 $的原始$ n $ th root定义的taft代数的d_n $。 Kauffman和Radford表明$ d_n $在且仅当$ n $奇怪并且功能区元素是唯一的时具有色带元素;但是,没有对此元素的明确描述。在这项工作中,我们明确确定$ d_n $的功能区元素。对于任何$ n \ geq 2 $,我们使用$ d_n $的r-matrix构建temperley-lieb algebra $ \ mathsf {tl} _k(ξ)$,用$ξ= - (q^{\ frac {\ frac {1}}}}}+q^frac} $ k $ -fold Tensor Power $ v^{\ otimes k} $的任何二维简单$ d_n $ -module $ v $。众所周知,此操作是任意$ k \ geq 1 $的忠诚。我们表明,$ \ Mathsf {tl} _k(ξ)$是centralizer algebra $ \ text {end} _ {d_n}(v^{\ otimes k})$ for $ 1 \ le K \ le 2n-2 $。

Over an algebraically closed field $\mathbb k$ of characteristic zero, the Drinfeld double $D_n$ of the Taft algebra that is defined using a primitive $n$th root of unity $q \in \mathbb k$ for $n \geq 2$ is a quasitriangular Hopf algebra. Kauffman and Radford have shown that $D_n$ has a ribbon element if and only if $n$ is odd, and the ribbon element is unique; however there has been no explicit description of this element. In this work, we determine the ribbon element of $D_n$ explicitly. For any $n \geq 2$, we use the R-matrix of $D_n$ to construct an action of the Temperley-Lieb algebra $\mathsf{TL}_k(ξ)$ with $ξ= -(q^{\frac{1}{2}}+q^{-\frac{1}{2}})$ on the $k$-fold tensor power $V^{\otimes k}$ of any two-dimensional simple $D_n$-module $V$. This action is known to be faithful for arbitrary $k \geq 1$. We show that $\mathsf{TL}_k(ξ)$ is isomorphic to the centralizer algebra $\text{End}_{D_n}(V^{\otimes k})$ for $1 \le k \le 2n-2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源