论文标题

Markovian量子神经进化用于机器学习

Markovian Quantum Neuroevolution for Machine Learning

论文作者

Lu, Zhide, Shen, Pei-Xin, Deng, Dong-Ling

论文摘要

神经进化,一个从自然界中大脑进化来汲取灵感的领域,利用进化算法来构建人工神经网络。它具有许多有趣的功能,这些功能通常是基于梯度的方法无法访问的,包括优化神经网络架构,超参数,甚至学习培训规则。在本文中,我们介绍了一种量子神经进化算法,该算法自动地找到了针对不同机器学习任务的近乎最佳的量子神经网络。特别是,我们在量子电路和有向图之间建立了一对一的映射,并将找到适当的门序列的问题减少到将相应图中搜索合适路径作为马尔可夫过程的任务。我们通过具体示例(包括现实生活图像和对称性保护拓扑状态的分类)基准了引入算法的有效性。我们的结果展示了量子体系结构搜索中神经进化算法的巨大潜力,这将通过嘈杂的中间尺度量子设备提高探索量子学习优势。

Neuroevolution, a field that draws inspiration from the evolution of brains in nature, harnesses evolutionary algorithms to construct artificial neural networks. It bears a number of intriguing capabilities that are typically inaccessible to gradient-based approaches, including optimizing neural-network architectures, hyperparameters, and even learning the training rules. In this paper, we introduce a quantum neuroevolution algorithm that autonomously finds near-optimal quantum neural networks for different machine-learning tasks. In particular, we establish a one-to-one mapping between quantum circuits and directed graphs, and reduce the problem of finding the appropriate gate sequences to a task of searching suitable paths in the corresponding graph as a Markovian process. We benchmark the effectiveness of the introduced algorithm through concrete examples including classifications of real-life images and symmetry-protected topological states. Our results showcase the vast potential of neuroevolution algorithms in quantum architecture search, which would boost the exploration towards quantum-learning advantage with noisy intermediate-scale quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源