论文标题
正规回归模型中的偏置意识推论
Bias-Aware Inference in Regularized Regression Models
论文作者
论文摘要
我们考虑在控制系数大小的约束下对标量回归系数的推断。基于正则倾向得分回归的一类估计器可准确解决最坏情况下的偏见和差异之间的权衡。我们根据这些偏见感知的估计器得出置信区间(CI):它们解释了估计器的可能偏差。在同性恋高斯误差下,这些估计器和顺式在MSE和CI长度的有限样品中几乎是最佳的。我们还为CI的渐近有效性提供了条件,并可能是未知且可能是异性误差分布的,并在高维渐近造物下得出了新颖的最佳收敛速率,从而使回归器的数量比观测值的数量更快。广泛的模拟和经验应用说明了我们方法的性能。
We consider inference on a scalar regression coefficient under a constraint on the magnitude of the control coefficients. A class of estimators based on a regularized propensity score regression is shown to exactly solve a tradeoff between worst-case bias and variance. We derive confidence intervals (CIs) based on these estimators that are bias-aware: they account for the possible bias of the estimator. Under homoskedastic Gaussian errors, these estimators and CIs are near-optimal in finite samples for MSE and CI length. We also provide conditions for asymptotic validity of the CI with unknown and possibly heteroskedastic error distribution, and derive novel optimal rates of convergence under high-dimensional asymptotics that allow the number of regressors to increase more quickly than the number of observations. Extensive simulations and an empirical application illustrate the performance of our methods.