论文标题
限制在具有可变表面相互作用的中孔中的水的动力学
Dynamics of Water Confined in Mesopores with Variable Surface Interaction
论文作者
论文摘要
我们已经通过不连贯的准中子中子散射实验研究了限制在介质的多孔二氧化硅(MCM-41)和周期性介孔有机硅(PMO)中的液体水的动力学。根据三个包括不同有机桥接单元和纯粹的硅质MCM-41病例的PMO的比较研究,评估了从亲水性到更多疏水性的水/表面相互作用对水迁移率的影响,同时将孔径保持在3.5-4.1 nm的范围内。通过合并飞行时间(IN5B)和反向散射(IN16B)准中子中子光谱仪,提供互补能量分辨率来实现扩展的动力范围。在定期间隔的温度下,研究了液态水,范围从300 K到243K。在所有系统中,可以通过在平均分子位置快速局部运动以及其质量中心的约束翻译跳转扩散而始终如一地描述分子动力学。所有进行局部弛豫的分子,而一小部分分子的平移运动在实验时间范围内冻结。这项研究提供了有关限制在中孔中的液态水的动力学的全面观点,其表面化学因素,就非移动/移动分数,自扩散系数,停留时间,限制半径,局部放松时间,局部放松时间及其温度依赖性而言。重要的是,它表明水/表面相互作用的强度决定了动力学的长时间尾巴,我们归因于界面分子的翻译扩散,而孔中心中的水动力学几乎不受界面亲密性的影响。
We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5-4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.