论文标题

FPCC:基于Fast Point Cloud聚类的实例细分用于工业垃圾箱

FPCC: Fast Point Cloud Clustering based Instance Segmentation for Industrial Bin-picking

论文作者

Xu, Yajun, Arai, Shogo, Liu, Diyi, Lin, Fangzhou, Kosuge, Kazuhiro

论文摘要

实例细分是许多现实世界中的重要预处理任务,例如机器人技术,自动驾驶汽车和人机交互。与二维图像任务的深度学习快速发展相比,基于深度学习的3D点云的基于深度学习的实例分割仍然有很大的开发空间。特别是,区分同一类的大量遮挡物体是一个极具挑战性的问题,它可以在机器人箱进行挑选中看到。在通常的bin采摘场景中,许多相同的对象被堆叠在一起,并且对象的模型是已知的。因此,语义信息可以忽略;取而代之的是,采摘垃圾箱的重点放在实例的分割上。基于此任务要求,我们提出了一个快速点云聚类(FPCC),例如分割bin picking场景。 FPCC包括一个名为FPCC-NET的网络和一种快速聚类算法。 FPCC-NET有两个子网,一个用于推断用于聚类的几何中心,另一个用于描述每个点的特征。 FPCC-NET提取每个点的特征,并同时渗透每个实例的几何中心点。之后,所提出的聚类算法将其余指向特征嵌入空间中最接近的几何中心。实验表明,FPCC还超过了bin选择场景中的现有作品,并且在计算上更有效。我们的代码和数据可在https://github.com/xyjbaal/fpcc上找到。

Instance segmentation is an important pre-processing task in numerous real-world applications, such as robotics, autonomous vehicles, and human-computer interaction. Compared with the rapid development of deep learning for two-dimensional (2D) image tasks, deep learning-based instance segmentation of 3D point cloud still has a lot of room for development. In particular, distinguishing a large number of occluded objects of the same class is a highly challenging problem, which is seen in a robotic bin-picking. In a usual bin-picking scene, many identical objects are stacked together and the model of the objects is known. Thus, the semantic information can be ignored; instead, the focus in the bin-picking is put on the segmentation of instances. Based on this task requirement, we propose a Fast Point Cloud Clustering (FPCC) for instance segmentation of bin-picking scene. FPCC includes a network named FPCC-Net and a fast clustering algorithm. FPCC-net has two subnets, one for inferring the geometric centers for clustering and the other for describing features of each point. FPCC-Net extracts features of each point and infers geometric center points of each instance simultaneously. After that, the proposed clustering algorithm clusters the remaining points to the closest geometric center in feature embedding space. Experiments show that FPCC also surpasses the existing works in bin-picking scenes and is more computationally efficient. Our code and data are available at https://github.com/xyjbaal/FPCC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源