论文标题
通过不一致的操作增加状态的最大纯连贯子空间的尺寸
Increasing the dimension of the maximal pure coherent subspace of a state via incoherent operations
论文作者
论文摘要
自由操作下的量子状态转化在连贯的资源理论中起着核心作用。在本文中,我们通过使用不连贯的操作和随机的不连贯操作研究了从混合相干状态到纯状态的转变。我们表明,与严格不一致的操作和随机性严格的行动相反,不一致的操作和随机不相互操作都可以增加状态的最大纯相干子空间的尺寸。这意味着,当我们想将混合的连贯状态转换为纯连贯的状态时,不一致的操作通常比严格不一致的操作更强大。我们的发现也可以解释为确认不一致的操作能够增强混合状态在严格不一致的操作下相对于某些连贯性单调的连贯性的能力。
Quantum states transformation under free operations plays a central role in the resource theory of coherence. In this paper, we investigate the transformation from a mixed coherent state into a pure one by using both incoherent operations and stochastic incoherent operations. We show that contrary to the strictly incoherent operations and the stochastic strictly incoherent operations, both the incoherent operations and the stochastic incoherent operations can increase the dimension of the maximal pure coherent subspace of a state. This means that the incoherent operations are generally stronger than the strictly incoherent operations when we want to transform a mixed coherent state into a pure coherent one. Our findings can also be interpreted as confirming the ability of incoherent operations to enhance the coherence of mixed states relative to certain coherence monotones under strictly incoherent operations.