论文标题
乘数角度的定量等级
Quantitative equidistribution of angles of multipliers
论文作者
论文摘要
我们研究$ \ Mathbb C(z)$中双曲线理性地图的乘数的乘数角度。对于固定的$ k \ gg 1 $,我们表明几乎所有长度的$2π/k $ in $(-π,π] $)包含一个乘数角度,其中属性的属性是乘数在$ k $中由多项式界面上的乘数界定的。
We study angles of multipliers of repelling cycles for hyperbolic rational maps in $\mathbb C(z)$. For a fixed $K \gg 1$, we show that almost all intervals of length $2π/K$ in $(-π,π]$ contain a multiplier angle with the property that the norm of the multiplier is bounded above by a polynomial in $K$.