论文标题

$ \ mathbb {z} $ - 边界链接的属

The $\mathbb{Z}$-genus of boundary links

论文作者

Feller, Peter, Park, JungHwan, Powell, Mark

论文摘要

$ \ mathbb {z} $ - $ s^3 $中的$ l $的属是本地平坦的,嵌入式,连接的表面的最低属,其边界为$ l $,与补充无限循环的基本组。我们表征了$ \ mathbb {z} $ - 边界链接的属,其单个变量blanchfield表单,我们提供了一些应用程序。特别是,我们表明了一个结的奶昔属的变体,即$ \ mathbb {z} $ - 摇属属,等于结的$ \ mathbb {z} $ - 结的属。

The $\mathbb{Z}$-genus of a link $L$ in $S^3$ is the minimal genus of a locally flat, embedded, connected surface in $D^4$ whose boundary is $L$ and with the fundamental group of the complement infinite cyclic. We characterise the $\mathbb{Z}$-genus of boundary links in terms of their single variable Blanchfield forms, and we present some applications. In particular, we show that a variant of the shake genus of a knot, the $\mathbb{Z}$-shake genus, equals the $\mathbb{Z}$-genus of the knot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源