论文标题

重新审视闭合的分段统一弦

The closed piecewise uniform string revisited

论文作者

Bordag, M., Pirozhenko, I. G.

论文摘要

我们重新考虑引入{30年前}的复合弦模型,以研究真空能量。该模型由标量场组成,描述了由带有不同张力和质量密度的分段恒定部分组成的字符串的横向振动,使整个交界处的光速保持恒定。我们考虑使用转移矩阵和Chebyshev多项式的频谱,以获得特征频率的封闭公式。我们以两种方法计算真空和自由能以及该系统的熵,一种使用轮廓积分,另一种使用Hurwitz Zeta函数。后者从多项式上的有限总和来表示表示。例如,也考虑了几种限制案例,例如,高温膨胀是根据热核系数表示的。真空能没有紫外线差异,由于光速的恒定,相应的热核系数$ A_1 $为零。这与具有同等边界条件的宏观电动力学中的类似情况并行。

We reconsider the composite string model introduced {30 years ago} to study the vacuum energy. The model consists of a scalar field, describing the transversal vibrations of a string consisting of piecewise constant sections with different tensions and mass densities, keeping the speed of light constant across the junctions. We consider the spectrum using transfer matrices and Chebyshev polynomials to get a closed formula for the eigenfrequencies. We calculate vacuum and free energy as well as the entropy of this system in two approaches, one using contour integration and another one using a Hurwitz zeta function. The latter results in a representation in terms of finite sums over polynomials. Several limiting cases are considered as well, for instance, the high-temperature expansion, which is expressed in terms of the heat kernel coefficients. The vacuum energy has no ultraviolet divergences, and the corresponding heat kernel coefficient $a_1$ is zero due to the constancy of the speed of light. This is in parallel to a similar situation in macroscopic electrodynamics with isorefractive boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源